Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 2): 118943, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631471

RESUMO

Biogenic manganese oxides (BioMnOx) have attracted considerable attention as active oxidants, adsorbents, and catalysts. However, characteristics and mechanisms of nitrification-denitrification in biological redox reactions mediated by different concentrations of BioMnOx are still unclear. Fate of nutrients (e.g., NH4+-N, TP, NO3--N) and COD were investigated through different concentrations of BioMnOx produced by Mn(II) in the moving bed biofilm reactor (MBBR). 34% and 89.2%, 37.8% and 89.8%, 57.3% and 88.9%, and 62.1% and 90.4% of TN and COD by MBBR were synchronously removed in four phases, respectively. The result suggested that Mn(II) significantly improved the performance of simultaneous nitrification and denitrification (SND) and TP removal based on manganese (Mn) redox cycling. Characteristics of glutathione peroxidase (GSH-Px), reactive oxygen species (ROS), and electron transfer system activity (ETSA) were discussed, demonstrating that ROS accumulation reduced the ETSA and GSH-Px activities when Mn(II) concentration increased. Extracellular polymeric substance (EPS) function and metabolic pathway of Mn(II) were explored. Furthermore, effect of cellular components on denitrification was evaluated including BioMnOx performances, indicating that Mn(II) promoted the non-enzymatic action of cell fragments. Finally, mechanism of nitrification and denitrification, denitrifying phosphorus and Mn removal was further elucidated through X-ray photoelectron spectroscopy (XPS), high throughput sequencing, and fourier transform infrared reflection (FTIR). This results can bringing new vision for controlling nutrient pollution in redox process of Mn(II).

2.
Chronobiol Int ; 41(3): 329-346, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516993

RESUMO

The light/dark cycle, known as the photoperiod, plays a crucial role in influencing various physiological activities in fish, such as growth, feeding and reproduction. However, the underlying mechanisms of this influence are not fully understood. This study focuses on exploring the impact of different light regimes (LD: 12 h of light and 12 h of darkness; LL: 24 h of light and 0 h of darkness; DD: 0 h of light and 24 h of darkness) on the expression of clock genes (LcClocka, LcClockb, LcBmal, LcPer1, LcPer2) and the secretion of hormones (melatonin, GnRH, NPY) in the large yellow croaker, Larimichthys crocea. Real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assays were utilized to assess how photoperiod variations affect clock gene expression and hormone secretion. The results indicate that changes in photoperiod can disrupt the rhythmic patterns of clock genes, leading to phase shifts and decreased expression. Particularly under LL conditions, the pineal LcClocka, LcBmal and LcPer1 genes lose their rhythmicity, while LcClockb and LcPer2 genes exhibit phase shifts, highlighting the importance of dark phase entrainment for maintaining rhythmicity. Additionally, altered photoperiod affects the neuroendocrine system of L. crocea. In comparison to the LD condition, LL and DD treatments showed a phase delay of GnRH secretion and an acceleration of NPY synthesis. These findings provide valuable insights into the regulatory patterns of circadian rhythms in fish and may contribute to optimizing the light environment in the L. crocea farming industry.


Assuntos
Melatonina , Perciformes , Glândula Pineal , Animais , Ritmo Circadiano/fisiologia , Fotoperíodo , Glândula Pineal/metabolismo , Melatonina/metabolismo , Expressão Gênica , Perciformes/genética , Perciformes/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo
3.
Bioresour Technol ; 399: 130621, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518879

RESUMO

A divalent iron-mediated moving bed biofilm reactor with intermittent aeration was developed to enhance the nitrogen removal at low carbon-to-nitrogen ratios. The study demonstrated thatammonia removal increased from 51 ± 4 % to 79 ± 4 % and nitrate removal increased from 72 ± 5 % to 98 ± 4 % in phases I-IV, and 2-5 mg·L-1 of divalent iron significantly increased the anoxic denitrification process. Divalent iron stimulated the secretion of extracellular polymeric substances, which facilitated the formation of cross-linked network between microbial cells. Furthermore, the cycle between divalent and trivalent iron decreased the energy barrier between the biofilm and the pollutant. The microbial community further revealed that Proteobacteria (relative abundance: 40-48 %) andBacteroidota(relative abundance: 31-37 %) were the dominant phyla, supporting the synchronous nitrification and denitrification processes as well as the lower accumulation of nitrite. In conclusion, iron redox cycling significantly enhanced the nitrogen removal. This study proposes a viable strategy for the efficient treatment of nutrient wastewater.


Assuntos
Desnitrificação , Nitrogênio , Reatores Biológicos/microbiologia , Nitrificação , Biofilmes
4.
Artigo em Inglês | MEDLINE | ID: mdl-38065309

RESUMO

Sea cucumber Apostichopus japonicus displays the typical circadian rhythms. This present study investigated the molecular regulation of clock genes, as well as monoamines and melatonin, in multiple tissues of A. japonicus, responding to the photoperiod. In order to determine their pivotal role in circadian rhythms, the crucial clock genes, namely AjClock, AjArnt1, AjCry1, and AjTimeless, were identified and a comprehensive analysis of their expressions across various tissues in adult A. japonicus was conducted, revealing the potential existence of central and peripheral oscillators. Results demonstrated that the tissues of polian vesicle and nerve ring exhibited significant clock gene expression associated with the orchestration of circadian regulation, and that environmental light fluctuations exerted influence on the expression of these clock genes. However, a number of genes, such as AjArnt1 and AjCry1, maintained their circadian rhythmicity even under continuous light conditions. Moreover, we further investigated the circadian patterns of melatonin (MT), serotonin (5-HT), and dopamine (DA) secretion in A. japonicus, data that underscored the tissue-specific regulatory differences and the inherent adaptability to dynamic light environments. Collectively, these findings will provide the molecular mechanisms controlling the circadian rhythm in echinoderms and the candidate tissues playing the role of central oscillators in sea cucumbers.


Assuntos
Relógios Circadianos , Melatonina , Pepinos-do-Mar , Stichopus , Animais , Fotoperíodo , Stichopus/genética , Pepinos-do-Mar/genética , Ritmo Circadiano/genética , Expressão Gênica , Regulação da Expressão Gênica , Relógios Circadianos/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-37769382

RESUMO

The sea cucumber Apostichopus japonicus is an economically important marine species in China, and understanding the mechanisms underlying its gonad development is crucial for successful reproduction and breeding. In this study, we performed transcriptome comparisons and analyses of A. japonicus gonadal and non-gonadal tissues to identify genes and molecular pathways associated with gonadal development. We also supplemented the annotation of the A. japonicus genome. Collectively, results revealed a total of 941 ovary-specific genes and 2499 testis-specific genes through different expression analysis and WGCNA analysis. The most enriched pathways in ovary and testis were "DNA replication" and "purine metabolism", respectively. Additionally, we identified key candidate gene modules that control gonad development and germ cell maturation, with CDT1 and DYNC2LI1 serving as hub genes. Our findings provide important insights into the gonadal development system of A. japonicus and offer valuable references for further research on reproductive biology in this marine invertebrate species.


Assuntos
Pepinos-do-Mar , Stichopus , Feminino , Masculino , Animais , Transcriptoma , Stichopus/genética , Pepinos-do-Mar/genética , Pepinos-do-Mar/metabolismo , Perfilação da Expressão Gênica , Ovário
6.
Biology (Basel) ; 12(6)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37372083

RESUMO

The sea cucumber, Apostichopus japonicus, is a marine benthic organism that feeds on small benthic particulate matter and is easily affected by pollutants. Bisphenol A (BPA, 4,4'-isopropylidenediphenol) has been identified as an endocrine disruptor. It is ubiquitously detectable in oceans and affects a variety of marine animals. It functions as an estrogen analog and typically causes reproductive toxicity by interfering with the endocrine system. To comparatively analyze the reproductive effects of estradiol (E2) and BPA on sea cucumbers, we identified a G protein-coupled estrogen receptor 1 (GPER1) in A. japonicus and investigated its effects on reproduction. The results showed that BPA and E2 exposure activated A. japonicus AjGPER1, thereby mediating the mitogen-activated protein kinase signaling pathways. High-level expression of AjGPER1 in the ovarian tissue was confirmed by qPCR. Furthermore, metabolic changes were induced by 100 nM (22.83 µg/L) BPA exposure in the ovarian tissue, leading to a notable increase in the activities of trehalase and phosphofructokinase. Overall, our findings suggest that AjGPER1 is directly activated by BPA and affects sea cucumber reproduction by disrupting ovarian tissue metabolism, suggesting that marine pollutants pose a threat to the conservation of sea cucumber resources.

7.
Front Oncol ; 11: 740427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950580

RESUMO

Immune characteristics were reported correlated to benefit neoadjuvant chemotherapy (NAC) in breast cancer, yet integration of comprehensive genomic alterations and T-cell receptors (TCR) to predict efficacy of NAC needs further investigation. This study simultaneously analyzed TMB (Tumor Mutation Burden), TCRs, and TILs (tumor infiltrating lymphocyte) in breast cancers receiving NAC was conducted in a prospective cohort (n = 22). The next-generation sequencing technology-based analysis of genomic alterations and TCR repertoire in paired breast cancer samples before and after NAC was conducted in a prospective cohort (n = 22). Fluorescent multiplex immunohistochemistry was used to stain CD4, CD8, PD1, TIM3, and cytokeratins simultaneously in those paired samples. TMB in pretreatment tumor tissues and TCR diversity index are higher in non-pCR patients than in pCR patients (10.6 vs. 2.3; p = 0.043) (2.066 vs. 0.467; p = 0.010). TMB and TCR diversity index had linear correlation (y = 5.587x - 0.881; r = 0.522, p = 0.012). Moreover, infiltrating T cells are significantly at higher presence in pCR versus non-pCR patients. Dynamically, the TMB reduced significantly after therapy in non-pCR patients (p = 0.010) but without TCR index change. The CDR3 peptide AWRSAGNYNEQF is the most highly expressed in pre-NAC samples of pCR patients and in post-NAC samples of non-pCR patients. In addition to pCR, high clonality of TCR and high level of CD8+ expression are associated with disease-free survival (DFS). TCR index and TMB have significant interaction and may guide neo-adjuvant treatment in operable breast cancers. Response to NAC in tumors with high TCR clonality may be attributable to high infiltration and expansion of tumor-specific CD8 positive effector cells.

8.
Sci Rep ; 5: 14194, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26373894

RESUMO

Sensitive optical imaging of active biomolecules in the living organism requires both a molecular probe specifically responsive to the target and a high-contrast approach to remove the background interference from autofluorescence and light scatterings. Here, a responsive probe for ascorbic acid (vitamin C) has been developed by conjugating two nitroxide radicals with a long-lived luminescent europium complex. The nitroxide radical withholds the probe on its "off" state (barely luminescent), until the presence of vitamin C will switch on the probe by forming its hydroxylamine derivative. The probe showed a linear response to vitamin C concentration with a detection limit of 9.1 nM, two orders of magnitude lower than that achieved using electrochemical methods. Time-gated luminescence microscopy (TGLM) method has further enabled real-time, specific and background-free monitoring of cellular uptake or endogenous production of vitamin C, and mapping of vitamin C in living Daphnia magna. This work suggests a rational design of lanthanide complexes for background-free small animal imaging of biologically functional molecules.


Assuntos
Ácido Ascórbico/metabolismo , Sondas Moleculares , Imagem Óptica/métodos , Animais , Linhagem Celular , Daphnia , Humanos , Concentração de Íons de Hidrogênio , Medições Luminescentes/métodos , Microscopia de Fluorescência
9.
Sci Technol Adv Mater ; 10(5): 055001, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27877309

RESUMO

Sandwich structures, constructed from a planar defect of rhodamine-B (RhB)-doped titania (TiO2) and two photonic crystals, were synthesized via the self-assembly method combined with spin-coating. The modification of the spontaneous emission of RhB molecules in such structures was investigated experimentally. The spontaneous emission of RhB-doped TiO2 film with photonic crystals was reduced by a factor of 5.5 over a large bandwidth of 13% of the first-order Bragg diffraction frequency when compared with that of RhB-doped TiO2 film without photonic crystals. The angular dependence of the modification and the photoluminescence lifetime of RhB molecules demonstrate that the strong and wide suppression of the spontaneous emission of the RhB molecules is due to the presence of the photonic band gap.

10.
Opt Express ; 14(12): 5055-60, 2006 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19516667

RESUMO

In nonlinear optical frequency conversion process, it is desirable to maximize the product of the intensity of pump laser and the interaction length in order to achieve maximum conversion efficiency. In this paper, long and unbroken submicron-diameter optical fibers with low optical loss about 0.1dB/cm were fabricated with a new drawing process by heating the conventional single mode fiber using a designed electric strip heater. Pumped by a 532 nm mode-locked pico-second laser, enhanced SRS phenomena can be observed in the submicron-diameter fibers with relative low pump power.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...